EXL6 OCS Datasheet for

HE-EXL1E0, HE-EXL1E2, HE- EXL1E3, HE- EXL1E4, HE- EXL1E5, HE-EXL1E6 HEXT371C100, HEXT371C112, HEXT371C113, HEXT371C114, HEXT371C115, HEXT371C116

1. Specifications

2. Dimensions \& Panel Cutout

001OCS003-R1
Cutout tolerance to meet NEMA standards is $\pm 0.005^{\prime \prime}$ (0.1 mm). Max. Panel Thickness is 5 mm .

3. Installation Procedures

1. Carefully locate an appropriate place to mount the EXL6. Be sure to leave enough room at the top of the unit for insertion and removal of the microSD card. Also leave enough room at the bottom for the insertion and removal of USB FLASH drives and wiring
2. Carefully cut the host panel per the diagram above, creating a $175 \mathrm{~mm} \times 216 \pm 0.1 \mathrm{~mm}$ opening into which the EXL6 may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the OCS. If the opening is too small, the OCS may not fit through the hole without damage.
3. Remove all Removable Terminals from the OCS. Insert the OCS through the panel cutout (from the front). The gasket needs to be between the host panel and the OCS.
4. Install and tighten the mounting clips (provided in the box) until the gasket forms a tight seal (max torque 7-10 lb-in. [0.81.13 Nm])
5. Reinstall the I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required.

4. Ports \& Connectors

5. Built-in I/O (Model 2, 3, 4, 5 \& 6)

All EXL6 models (except the HE-EXL1E0) feature built-in I/O. The I/O is mapped into OCS Register space, in three separate areas - Digital/Analog I/O, High-Speed Counter I/O, and High-speed Output I/O. Digital/Analog I/O location is fixed starting at 1, but the High- speed Counter and High-speed Output references may be mapped to any open register location. For more details on using the High-Speed Counter and High-Speed Outputs, see the EXL6 OCS User's Manual (MAN0974-01).

Fixed Address	Digital/Analog I/O Function	EXL10e Model				
		2	3	4	5	6
\%11	Digital Inputs	1-12	1-12	1-24	1-12	1-12
	Reserved	13-32	13-31	25-31	13-31	13-31
	ESCP Alarm	n / s	32	32	32	32
\%Q1	Digital Outputs	1-6	1-12	1-16	1-12	1-12
	Reserved	7-24	13-24	17-24	13-24	13-24
\%Al1	Analog Inputs	1-4	1-2	1-2	1-2	1-4; 33-38
	Reserved	5-12	3-12	3-12	3-12	n/a
\%AQ1	Reserved	n/9	1-8	1-8	1-8	1-12
	Anslog Outputs	n/9	n/9	n/9	9-10	n/a
Reserved areas maintain backward compatibility with other XL Series OCS models						

Default Address	High-Speed Counter Function	EXL10e Models $2-6$
$\% 11601$	Status Bits	$1-8$
\%Q1601	Command Bits	$1-32$
\%AI0401	 2	$1-8$
\%AQ0401	Preload \& Match Values	$1-12$
 \%AQ may be re-mapped by user		

Default Address*	High-Speed Output Function	EXL10e Models $2-6$
$\% / 1617$	Status Bits	$1-8$
\%Q1**	Command Bits	$1-2$
n/a	n/s	n/s
\%AQ421	PWMor Pulse-Train Parameters	$1-20$
*Starting Address locations for \%/ \& \%AQ may be		
remapped by user		

$5.1 \quad$ Model 2 - I/O

Specifications					
Digital DC Inputs			Digital Relay Outputs		
Inputs per Module	12 including 4 configurable HSC inputs		Outputs per Module	6 Relay	
Commons per Module	1		Commons per Module	6	
Input Voltage Range	$12 \mathrm{VDC} / 24 \mathrm{VDC}$		Max Output Current per Relay	3 A @ 250 VAC, resistive	
Absolute Max. Voltage	35 VDC Max.		Max. Total Output Current	5A continuous	
Input Impedance	$10 \mathrm{k} \Omega$		Max. Output Voltage	275VAC, 30 VDC	
Input Current Positiv Upper Threshold 0.8 Lower Threshold 0.3	ogic N	Negative Logic $-1.6 \mathrm{~mA}$ -2.1 mA	Max Switched Power	1250VAC, 150W	
Max Upper Threshold	8 VDC		Contact Isolation to Ground	1000VAC	
Min Lower Threshold	3 VDC		Max. Voltage Drop at Related Current	0.5 V	
OFF to ON Response	1 ms		Expected life (see below derating chart for detail)	No Load: 5,000,000Rated Load: 100,000	
ON to OFF Response	1 ms		Max. Switching Rate	300 CPM at no load 20CPM at rated load	
HSC Max. Switching Rate	10 kHz Totalizer/Pulse, Edges 5 kHz Frequency/Pulse, Width 2.5 kHz Quadrature		Type	Mechanical Contact	
			Response Time	One update per ladder scan plus 10ms	
Analog Inputs, Medium Resolution					
Number of channels	4		Input Ranges	$\begin{gathered} \hline 0-10 \mathrm{VDC} \\ 0-20 \mathrm{~mA} \\ 4-20 \mathrm{~mA} \\ \hline \end{gathered}$	
Safe input voltage range	-0.5 V to 12 V		Input impedance (clamped @ -0.5VDC to 12 VDC	Current Mode: 100Ω	Voltage Mode: $500 \mathrm{k} \Omega$
Nominal Resolution	10 Bits		\%AI full Scale	32,000	
Max. Over Current	35 mA		Conversion Speed	Once per Ladder Scan	
Max. Error at $25^{\circ} \mathrm{C}$ (excluding zero) Adjusting filtering may tighten	4-20 mA 1.00% $0-20 \mathrm{~mA}$ 1.00% $0-10 \mathrm{VDC}$ $1.50 \%{ }^{*}$		Filtering	160 Hz hash (noise) filter 1-128 scan digital running average filter	

Orange \dagger
Digital In / Analog In

J1 (Orange)	Name
I1	IN1
I2	IN2
I3	IN3
14	IN4
I5	IN5
16	IN6
17	IN7
I8	IN8
H1	HSC1 / N9
OV	Common
A1	Analog IN1
A2	Analog IN2
A3	Analog IN3
A4	Analog IN4
OV	Common

J2 (Black)	Name
C6	Relay 6 COM
R6	Relay 6 NO
C5	Relay 5 COM
R5	Relay 5 NO
C4	Relay 4 COM
R4	Relay 4 NO
C3	Relay 3 COM
R3	Relay 3 NO
C2	Relay 2 COM
R2	Relay 2 NO
C1	Relay 1 COM
R1	Relay 1 NO
H4	HSC4 / IN12
H3	HSC3 / IN11
H2	HSC2 / IN10

"WARNING: EXPOSURE TO SOME CHEMICALS MAY DEGRADE THE SEALING PROPERTIES OF MATERIALS USED IN THE Tyco relay PCJ

Cover / case \& base: Mitsubishi engineering Plastics Corp
$5010 \mathrm{GN} 6-30$ or $5010 \mathrm{GN6}$-30 M8 (PBT)
Sealing Material: Kishimoto 4616-50K (I part epoxy resin)
It is recommended to periodically inspect the relay for any degradation of properties and replace if degradation is found
5.2

Model 3 \& 4 - I/O

Specifications					
Digital DC Inputs	Model 3	Model 4	Digital DC Outputs	Model 3	Model 4
Inputs per Module	12 including 4 configurable HSC inputs	24 including 4 configurable HSC inputs	Outputs per Module	12 including 2 configurable PWM outputs	16 including 2 configurable PWM outputs
Commons per Module	1		Commons per Module	1	
Input Voltage Range	$12 \mathrm{VDC} / 24 \mathrm{VDC}$		Output Type	Sourcing / 10 K Pull-Down	
Absolute Max. Voltage	35 VDC Max.		Absolute Max. Voltage	28 VDC Max.	
Input Impedance	$10 \mathrm{k} \Omega$		Output Protection	Short Circuit	
Input Current	Positive Logic	Negative Logic	Max. Output Current per point	0.5 A	
Upper Threshold	0.8 mA	-1.6 mA	Max. Total Current	4 A	inuous
Lower Threshold	0.3 mA	-2.1 mA	Max. Output Supply Voltage		
Max Upper Threshold	8 VDC		Minimum Output Supply Voltage	10 VDC	
Min Lower Threshold	3 VDC		Max. Voltage Drop at Rated Current	0.25 VDC	
OFF to ON Response	1 ms		Max. Inrush Current	650 mA per channel	
ON to OFF Response	1 ms		Min. Load	None	
HSC Max. Switching Rate	500 KHz each		OFF to ON Response	1 ms	
ON to OFF Response	1 ms		Output Characteristics	Current Sourcing (Pos logic)	

	Model 3 \& 4 Signal Name
11	IN1
12	IN2
13	IN3
14	IN4
15	IN5
16	IN6
17	IN7
18	IN8
H1	HSC1 / IN9
H2	HSC2 / IN10
H3	HSC3 / IN11
H4	HSC4 / IN12
A1	Analog IN1
A2	Analog IN2
OV	Common

> J 1 (Orange) Positive Logic† Digital \& Analog In

(Black) \begin{tabular}{|c|c|c|}

\hline | Model 3 |
| :---: |
| Name | \& | Model 4 |
| :---: |
| Name |

\hline OV \& Common

\hline V+ \& V+ *

\hline NC \& | No |
| :---: |
| Connect | \& OUT13

\hline Q12 \& OUT12

\hline Q11 \& OUT11

\hline Q10 \& OUT10

\hline Q9 \& OUT9

\hline Q8 \& OUT8

\hline Q7 \& OUT7

\hline Q6 \& OUT6

\hline Q5 \& OUT5

\hline Q4 \& OUT4

\hline Q3 \& OUT3

\hline Q2 \& OUT2 /PWM2

\hline Q1 \& OUT1/PWM1

\hline V+ Supply for Sourcing Outputs

\hline
\end{tabular}

J3 (Orange)	Model 4 only Signal Name
113	IN 13
114	IN 14
115	IN 15
116	IN 16
117	IN 17
118	IN 18
119	IN 19
120	IN 20
121	IN 21
$I 22$	IN 22
I 23	IN 23
I 24	IN 24
0 V	Common

Specifications/Installation

5.3 Model 5 - I/O

Digital DC Inputs			Digital DC Outputs	
Inputs per Module	12 including 4 configurable HSC inputs		Outputs per Module	12 including 2 configurable PWM outputs
Commons per Module	1		Commons per Module	1
Input Voltage Range	12 VDC / 24 VDC		Output Type	Sourcing / 10 K Pull-Down
Absolute Max. Voltage	35 VDC Max.		Absolute Max. Voltage	28 VDC Max.
Input Impedance	$10 \mathrm{k} \Omega$		Output Protection	Short Circuit
Input Current	Positive Logic	Negative Logic	Max. Output Current per point	0.5 A
Upper Threshold	0.8 mA	-1.6 mA	Max. Total Current	4 A Continuous
Lower Threshold	0.3 mA	-2.1 mA	Max. Output Supply Voltage	30 VDC
Max Upper Threshold	8 VDC		Minimum Output Supply Voltage	10 VDC
Min Lower Threshold	3 VDC		Max. Voltage Drop at Rated Current	0.25 VDC
OFF to ON Response	1 ms		Max. Inrush Current	650 mA per channel
ON to OFF Response	1 ms		Min. Load	None
HSC Max. Switching Rate	10 kHz Totalizer/Pulse, Edges 5 kHz Frequency/Pulse, Width 2.5 kHz Quadrature		OFF to ON Response	1 ms
			ON to OFF Response	1 ms
			Output Characte	Current Sourcing (Positive Logic)
Analog Inputs, High Resolution				
Number of Channels	2		Thermocouple	Temperature Range
Input Ranges (Selectable)	$\begin{gathered} 0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 100 \mathrm{mV} \\ \text { PT100 RTD, } \\ \text { and J, K, N, T, E, R, S, B Thermocouples } \end{gathered}$		$\mathrm{B} / \mathrm{R} / \mathrm{S}$ $2912^{\circ} \mathrm{F}$ to $32.0^{\circ} \mathrm{F}\left(1600^{\circ} \mathrm{C}\right.$ to $\left.0^{\circ} \mathrm{C}\right)$ E $1652^{\circ} \mathrm{F}$ to $-328^{\circ} \mathrm{F}\left(900^{\circ} \mathrm{C}\right.$ to $\left.-200^{\circ} \mathrm{C}\right)$ T $752.0^{\circ} \mathrm{F}$ to $-400.0^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right.$ to $\left.-240^{\circ} \mathrm{C}\right)$ J $1382.0^{\circ} \mathrm{F}$ to $-346.0^{\circ} \mathrm{F}\left(750^{\circ} \mathrm{C}\right.$ to $\left.-210^{\circ} \mathrm{C}\right)$ K / N $2498.0^{\circ} \mathrm{F}$ to $-400^{\circ} \mathrm{F}\left(1370^{\circ} \mathrm{C}\right.$ to $\left.-240^{\circ} \mathrm{C}\right)$	
Safe input voltage range	$\begin{array}{cc} 10 \mathrm{VDC}: & -0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\ 20 \mathrm{~mA}: & -0.5 \mathrm{~V} \text { to }+6 \mathrm{~V} \\ \text { RTD } / \mathrm{T} / \mathrm{C}: & \pm 24 \mathrm{VDC} \end{array}$		Thermocouple Common Mode Range	$\pm 10 \mathrm{~V}$
Nominal Resolution	$10 \mathrm{~V}, 20 \mathrm{~mA}, 100 \mathrm{mV}$: 14 Bits RTD, Thermocouple: 16 Bits		Converter Type	Delta Sigma
Input Impedance (Clamped @ -0.5 VDC to 12 VDC$)$	Current Mode: $100 \Omega, 35 \mathrm{~mA}$ Max. Continuous Voltage Mode: $500 \mathrm{k} \Omega, 35 \mathrm{~mA}$ Max. Continuous		Max. Error at $25^{\circ} \mathrm{C}$ (*excluding zero)	$* 4-20 \mathrm{~mA}$ $\pm 0.10 \%^{*}$ ${ }^{*} 0-20 \mathrm{~mA}$ $\pm 0.10 \%^{*}$ *0-10 VDC $\pm 0.10 \%^{*}$ RTD (PT100) $\pm 1.0{ }^{\circ} \mathrm{C}$ $0-100 \mathrm{mV}$ $\pm 0.05 \%$
			Max Therm (After Warm Up	$\pm 0.2 \%\left(\pm 0.3 \%\right.$ below $\left.-100^{\circ} \mathrm{C}\right)$
\%AI full scale	$10 \mathrm{~V}, 20 \mathrm{~mA}, 100 \mathrm{mV}$: 32,000 counts full scale. RTD / T/C: 20 counts $/{ }^{\circ} \mathrm{C}$		Conversion Speed, Both Channels Converted	10V, 20mA, 100mV: 30 Times/Second RTD, Thermocouple: 7.5 Times/Second
Max. Over-Current	35 mA		Conversion Time per Channel	$10 \mathrm{~V}, 20 \mathrm{~mA}, 100 \mathrm{mV}: 16.7 \mathrm{mS}$ RTD, Thermocouple: 66.7 mS
Open Thermocouple Detect Current	50 nA		RTD Excitation Current	$250 \mu \mathrm{~A}$

Specifications/Installation

5.4 Model 6 - I/O

5.4.1 Hardware Specification

Digital DC Inputs			Digital DC Outputs	
Inputs per Module	12		Outputs per Module	12
Commons per Module	1		Commons per Module	I
Input Voltage Range	0 VDC - 24 VDC		Output Type	Sourcing / 10 K Pull-Down
Absolute Max. Voltage	35 VDC Max.		Absolute Max. Voltage	30 VDC Max.
Input Impedance	$10 \mathrm{k} \Omega$		Output Protection	Short Circuit \& Overvoltage
Input Current Minimum 'On’ current Maximum 'Off' current.	$\begin{aligned} & \text { Positive Logic } \\ & \hline 0.8 \mathrm{~mA} \\ & 0.3 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { Negative Logic } \\ & -1.6 \mathrm{~mA} \\ & -2.1 \mathrm{~mA} \end{aligned}$	Max. Output Current per point	0.5 A
			Max. Total Current per driver (Q1-4, Q5-8, Q9-12).	2A Continuous
Min 'On' Input	8 VDC		Max. Output Supply Voltage	30 VDC
Max 'Off' Input	3 VDC		Minimum Output Supply Voltage	10 VDC
OFF to ON Response	1 ms		Max. Voltage Drop at Rated Current	0.25 VDC
ON to OFF Response	1 ms		Min. Load	None
Galvanic Isolation	None.		I/O Indication	None
Logic Polarity	Positive and Negative based on Common pin level.		Galvanic Isolation	None
I/O Indication	None.		OFF to ON Response	150ns
High Speed Counter Inputs*	4 - DIN 8-12		ON to OFF Response	150nS
High Speed Counter Max Freq*	$\begin{aligned} & \text { XLE/T/6/10 / XL4/7 } \\ & 10 \mathrm{KHz} \mathrm{/} 500 \mathrm{KHz} \\ & \hline \end{aligned}$		PWM Out*	$\begin{aligned} & \text { XLE/T/6/10 / XL4/7 } \\ & 65 \mathrm{KHz} / 500 \mathrm{KHz} \\ & \hline \end{aligned}$
Connector Type	3.5mm Pluggable cage clamp connector		Output Characteristics	Current Sourcing (Pos logic)
Analog Inputs				
Number of Channels	6		Absolute max Input Voltage	-0.5-12V dc. (+/-30Vdc)
Input Range	$0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \mathrm{dc}$. $0-60 \mathrm{mV}, 0-10 \mathrm{~V} \mathrm{dc}$. T/C - J, K, N, T, E, R, S, B RTD - PT100, PT1000		Input Impedance (Clamped @ -0.5 to 10.23VDC).	$\begin{aligned} & \mathrm{T} / \mathrm{C} / \mathrm{RTD} / \mathrm{mV}>2 \mathrm{M} \Omega \\ & \mathrm{~mA}: 15 \Omega+1.5 \mathrm{~V} \\ & \mathrm{~V}: 1.1 \mathrm{M} \Omega \end{aligned}$
Nominal Resolution	14-17 Bits (variable depending on input type)		Galvanic Isolation	None
Sensor Range and Accuracy	Input Type	Range		Accuracy
	TC J	-120 to 10	$0^{\circ} \mathrm{C} /-184$ to $1832^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1^{\circ} \mathrm{C}$
	TC K	-130 to 13	$2^{\circ} \mathrm{C} /-202$ to $2501.6^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1^{\circ} \mathrm{C}$
	TC T	-130 to 40	\% / -202 to $752^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1^{\circ} \mathrm{C}$
	TC E	-130 to 780	${ }^{\circ} \mathrm{C} /-202$ to $1436{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1^{\circ} \mathrm{C}$
	TC N	-130 to 13	$0^{\circ} \mathrm{C} /-202$ to $2372^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1^{\circ} \mathrm{C}$
	TC R, S	20 to 1768	C / 68 to $3214.4{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 3^{\circ} \mathrm{C}$
	TC B	100 to 182	$0^{\circ} \mathrm{C} / 212$ to $3308^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 3^{\circ} \mathrm{C}$
	PT100/1000	-200 to 85	${ }^{\circ} \mathrm{C} /-328$ to $1562^{\circ} \mathrm{F}$	$\pm 0.15 \%$ FS
	0-20mA	0-20mA		$\pm 0.15 \%$ FS
	0-60mV	0-60mV		$\pm 0.15 \%$ FS
	0-10V	0-10V		$\pm 0.15 \%$ FS
Conversion Speed	Minimum all channels converted in approx. 150mS.			
Analog Outputs				
Number of Channels	4		Minimum Current load	500Ω
Output Ranges	$\begin{aligned} & 0-10 \mathrm{Vdc} . \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \mathrm{dc} \end{aligned}$		Galvanic Isolation	None
Nominal Resolution	12 Bits		Conversion Speed	Min all channels once per scan.
Response Time	One update per ladder scan.			
Max. Error at $25^{\circ} \mathrm{C}$ (excluding zero)	$\begin{array}{ll}0-20 \mathrm{~mA} & 0.1 \% \text { of full scale. } \\ 0-10 \mathrm{~V} & 0.1 \% \text { of full scale }\end{array}$		Additional Error for temperatures other than $25^{\circ} \mathrm{C}$	$20 \mathrm{~mA} \quad 0.0126 \% /{ }^{\circ} \mathrm{C}$.

[^0]
5.4.2 Connection Details

5.4.3 Example Universal Input Wiring Schematic

 the configured output type is calibrated (maximum 4 channels simultaneously).

Configuration

The data registers are as follows:

Digital Inputs	Digital Outputs	Analogue Inputs	Analogue Outputs
\%I1-12	\%Q1-12	\%AI1-4, \%AI33-38	\%AQ9-12

Note that the first four analogue inputs are mapped to both \%AI1-4 and \%AI33-36, analogue input channels 5 \& 6 are mapped to \%AI37 and \%AI38 respectively only.

5.4.4 Data values:

The analogue inputs return data types as follows:

Input Mode	Data format	Comment		
$0-2 \mathrm{~mA}, 4-20 \mathrm{~mA}$	$0-32000$			
$0-10 \mathrm{~V}, 0-60 \mathrm{mV}$	$0-32000$	Temperature in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ to 1 decimal place xxx.y		${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ may be selected in the I/O config
:---				
Tection.				
The value is an integer, the user should divide				
T/C, RTD				

5.4.5 Status Register

Note: For the purposes of the example, the block is shown starting at \%R1, but it can be set to anywhere in the \%R memory map.

Specifications/Installation

6. Safety

WARNING: Battery may explode if mistreated. Do not recharge,	WARNING: Only qualified electrical personnel familiar with the construction disassemble or dispose of in fire. and operation of this equipment and the hazards involved should install, Wdjust, operate, or service this equipment Read and understand this manual WARNING: EXPLOSION HAZARD - BATTERIES MUST ONLY BE
CHANGED IN AN AREA KNOWN TO BE NON-HAZARDOUS	and other applicable manuals in their entirety before proceeding. Failure to
observe this precaution could result in severe bodily injury or loss of life.	
Power input and output (I/O) wiring must be in accordance with Class I,	WARNING: To avoid the risk of electric shock or burns, always connect the
Division 2 wiring methods of the National Electric Code, NFPA 70 for	
installations in the U.S., or as specified in Section 18-1J2 of the Canadian	earth ground before making any other connections.
Electrical Code for installations within Canada and in accordance with the	WARNING: To reduce the risk of fire, electrical shock, or physical injury it is
authority having jurisdiction.	strongly recommended to fuse all Power Sources connected to the OCS. Be sure to locate fuses as close to the source as possible. This equipment is suitable for use in Class I, Division 2, Groups A, B, C, and D or Non-hazardous locations only.
WARNING: EXPLOSION HAZARD - Do not disconnect equipment unless	WARNING: Replace fuse with the same type and rating to provide protection
against risk of fire and shock hazards.	
power has been switched off or the area is known to be non-hazardous.	WARNING: In the event of repeated failure, do not replace the fuse again as
WARNING: EXPLOSION HAZARD - Substitution of components may impair	a repeated failure indicates a defective conditionthat will not clear by
replacing the fuse.	
suitability for Class 1, Division 2.	Jumpers on connector JP1 and others shall not be removed or replaced while
Digital outputs shall be supplied from the same source as the Operator	the circuit is live unless the area is known to be free of ignitable
Control Station.	concentrations of flammable gasses or vapors.

7. Common Cause of Analog Input Tranzorb Failure

A common cause of Analog Input Tranzorb Failure on Analog Inputs Model 2, 3, 4 \& 5: If a 420 mA circuit is initially wired with loop power, but without a load, the Analog input could see 24 Vdc . This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and Analog input.

NOTE \dagger : Refers to Model 2 - orange (pg.5,) Models $3 \& 4-\mathrm{J} 1$ (pg.6) and Model $5-20 \mathrm{~mA}$ Analog In (pg.7.)

8. Technical Support

For assistance and manual updates, contact Technical Support at the following locations:

North America
(317) 916-4274
Toll Free: 877-665-5666
http://www.heapg.com
e-mail:techsppt@heapg.com

Europe
(+) 353-21-4321-266
http://www.horner-apg.com
e-mail: tech.support@horner-apg.com

[^0]: *see I/O information below for detail regarding HSC and PWM

